Context Management

Understanding Context Management

Context management in 42rows allows you to enhance AI responses by providing custom knowledge bases and training data, enabling more accurate and contextually relevant outputs.

Enhanced Accuracy

Improve AI responses with domain-specific knowledge and brand guidelines

Consistent Outputs

Maintain brand voice and style across all AI-generated content

Customized Learning

Train AI models with your specific business requirements and industry knowledge

Training Data Management

Preparing Training Data

Training Data Preparation in 42rows

Step 1: Content Collection

  • Gather relevant documentation
  • Compile brand guidelines
  • Collect example content
  • Identify key knowledge sources

Step 2: Data Organization


{
    "training_structure": {
        "brand_voice": {
            "guidelines": "path/to/guidelines.pdf",
            "examples": ["example1.txt", "example2.txt"]
        },
        "product_knowledge": {
            "specifications": "specs.csv",
            "descriptions": "descriptions.json"
        }
    }
}
                    

Step 3: Quality Assurance

  • Verify accuracy of information
  • Check for consistency
  • Remove outdated content
  • Validate formatting

Supported Content Types

Document Files

  • PDF Documents
  • Word Documents (.docx)
  • Text Files (.txt)
  • Markdown Files (.md)

Web Content

  • HTML Pages
  • Knowledge Base Articles
  • Documentation Sites
  • Blog Posts

Structured Data

  • JSON Files
  • CSV Data
  • XML Documents
  • Database Exports

Context Optimization

Performance Optimization

Context Optimization in 42rows

Content Organization

  • Implement clear naming conventions
  • Create logical category structure
  • Tag content appropriately
  • Maintain version control

Processing Efficiency

  • Optimize file sizes
  • Use efficient data formats
  • Implement caching strategies
  • Balance context scope

Quality Management

  • Regular content reviews
  • Update outdated information
  • Remove redundant data
  • Validate accuracy

Best Practices

Content Quality

  • Accuracy: Ensure all information is current and correct
  • Relevance: Include only pertinent information
  • Consistency: Maintain uniform formatting and style

Context Scope

  • Granularity: Balance detail level with processing efficiency
  • Coverage: Ensure comprehensive topic coverage
  • Relevance: Focus on business-critical information

Maintenance

  • Regular Updates: Schedule periodic content reviews
  • Version Control: Track changes and maintain history
  • Performance Monitoring: Track context effectiveness

Implementation Examples

Brand Voice Training


{
    "context_type": "brand_voice",
    "content": {
        "tone": "professional, friendly, authoritative",
        "style_guide": "path/to/style-guide.pdf",
        "examples": {
            "good": ["example1.txt", "example2.txt"],
            "avoid": ["counter-example1.txt"]
        }
    }
}
                    

Product Knowledge Base


{
    "context_type": "product_knowledge",
    "content": {
        "specifications": "products.csv",
        "descriptions": "descriptions.json",
        "images": "product-images/",
        "categories": "categories.yaml"
    }
}